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This paper describes an experimental study of the distortion of grid-generated 
turbulence as it approaches the stagnation region of a two-dimensional bluff 
body. When Lx/D 1, where L, is the scale of turbulence and D is a typical 
body dimension, along the mean stagnation streamline (u")* attenuates like the 
mean flow, whereas if LxlD 4 1 the turbulence is distorted by the mean flow 
field and (u")* will amplify because of vortex stretching. When Lx/D = O(1) 
there is found to be a combination of these effects with attenuation of energy 
at low wavenumbers and amplification at high wavenumbers. Measurements of 
the pressure fluctuations at the stagnation point show that at low wavenumbers 
the level of the pressure fluctuations can be predicted by a direct application of 
Bernoulli's equation. 

1. Introduction 
When a bluff body is placed in a turbulent shear flow, for example a building 

in the earths boundary layer, there will be some complex interaction between 
the mean flow field around the body and the approaching stream turbulence. 
This interaction will influence the relationship between upstream velocity 
fluctuations and the resulting pressure fluctuations on the body surface. The 
aim of the research described in this paper was to study experimentally the 
passage of grid-generated turbulence approaching the stagnation region of a two- 
dimensional body. Although this is a simpler problem than that posed above it 
retains the important feature of turbulence distortion. 

Hunt (1971a) (see also Hunt 1971b) has formulated a theory, based on the 
rapid distortion theory of Batchelor & Proudman (1954), for analysing the dis- 
tortion of turbulence in a flow sweeping past a body. The principal assumption 
made in the theory is that, in the time it takes for the turbulence to be swept 
past the body, the changes in the mean flow around the body and the effects 
of its boundaries distort the turbulence far more than its own internal viscous 
and nonlinear inertial forces. The turbulence will be distorted by the stretching 
and rotating of vortex line filaments as they are convected past the body. The 
assumptions made in rapid distortion theory are first, that the mean flow is 
irrotational and second, that (.")*/V < 1 (where (u"), is the root-mean-square 
value of the longitudinal component of the turbulence and ;Cr is the mean 
velocity), so that the dominant contribution to the distortion comes from changes 
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in the mean flow and not from the turbulence itself. The neglect of viscous effects 
is justified if the distortion takes place in such a short time that the viscous decay 
of energy is very small. Batchelor & Proudman (1954) suggested the criterion 

t - t’ < [L,/(aq,=,, 

where t’ is the time at  the beginning of the distortion and L, is the integral scale 
length in the mean flow direction of the longitudinal component of turbulence, 
say. For the flow past a body 

where U, is free-stream velocity and D is a typical body dimension. This leads 
to the third condition that 

t-t’ = O(U0/D), 

@,J/U, < Lx/D. 

Using these three assumptions Hunt (1971a) treated the problem of initially 
isotropic turbulence convected past a circular cylinder. Although the theory of 
Hunt will not be used directly the interpretation of the experimental results 
presented in this paper draws heavily on the basic ideas underlying this theory. 

The flow along the stagnation streamline approaching a two-dimensional flat 
plate placed normal to the flow was investigated; along this line the turbulence 
is only subjected to plane strain. Experimental work on uniform plane strain 
has been carried out by several investigators, including Townsend (1954) and 
Tucker & Reynolds (1968), in suitably shaped distorting ducts. These experi- 
ments are unsatisfactory in the sense that the condition (.”)&/a < Lx/D (where D 
is now some duct dimension) is not met. Tucker & Reynolds, however, have made 
suitable allowance for viscous decay in the analysis of their results. In  some 
respects the external flow around bodies is more suited to a rapid distortion 
treatment, although there are regions of the flow, especially very close to the 
stagnation point, where the conditions of the theory are not satisfied. Along the 
stagnation streamline there is some balance between the distortion created by 
the modification to the vorticity field by the mean flow, which will increase (.”)*, 
and the effect of the boundary condition, that there can be no velocity normal 
to the body surface, which will reduce (G)*. The experiments described in this 
paper were performed for four values of the turbulence scale in the range where 
this scale is of the same order as the size of the body. 

The phenomenum of increased turbulence ahead of stagnation was first noted 
by Piercy & Richardson (1930) in some measurements ahead of an aerofoil in 
a wind tunnel with a high background turbulence level. Purther mention is 
made by Keuthe, Willmarth & Crocker (1959), who examined the stagnation 
region on bodies of revolution. Work has been carried out by Sutera, Maeder & 
Kestin (1963) and by Sutera (1965) on the role of vorticity amplification in 
stagnation flow. They have examined theoretically a simple form of spatially 
varying sinusoidal pattern of vorticity, favourably orientated to produce 
stretching, entering a stagnation-point boundary layer. They find a neutral scale 
length for which amplification by stretching is exactly balanced by viscous dis- 
sipation. This theory has been extended by Sadeh, Sutera & Maeder (1970a, b )  to 
the outer ffow field for a similar form of vorticity distribution. Their theory does 
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Mesh size Bar size Distance to stagna- 
Grid M (om) b (em) tion point, x /M 

A 3.81 0.98 70.4 
B 7.62 1.28 35-1 
C 15.22 3.11 17.6 
D 22-83 3.77 11.7 

TABLE 1 

not, however, allow for the important effect of the upstream influence of the 
condition that there can be no velocity normal t o  the body surface. Their theory 
is only valid, therefore, at very high wavenumbers. They compare their theory 
with some measurements in a turbulent flow approaching a plate where L,/D < 1.  
This increased turbulence level due to the inviscid amplification of approaching 
turbulence should not be confused with the stagnation-point instabilities in- 
vestigated by Kestin & Wood (1970)., 

In  addition to the investigation of the turbulent velocity field, measure- 
ments of pressure fluctuations at  the stagnation point are presented. These 
were made in order to determine the relationship between approaching velocity 
fluctuations and resulting pressure fluctuations, and to examine the depend- 
ence of this relationship on the scale parameter LJD. Marshall (1968) has com- 
pleted a similar programme of measurements on a grid-generated turbulent 
flow approaching a disk. His measurements, however, were restricted to only 
one value of the turbulence scale. 

2. Experimental arrangement 
The experiments were conducted at the National Physical Laboratory ina wind 

tunnel with a 3 by 3ft, 15ft long working section. The tunnel is of the closed- 
return type and when empty has a free-stream turbulence level of better than 
0.07% and a maximum speed of about 15Oft/s. Highly turbulent flow was 
generated by the installation of square mesh grids at the beginning of the working 
section. Details of the grids, which were constructed of bars of rectangular cross- 
section, are given in table 1. The wind tunnel was equipped with a fine-pitch fan 
designed to operate unstalled with a high solidity grid in the working section. 

The bluff body used was a flat plate spanning the tunnel and mounted normal 
to the flow. Of prime interest was the distortion of the approaching turbulence 
and in order to remove any unsteadiness in the flow around the plate, generated 
by vortex shedding in the wake, it was decided to fill in the wake along the 
theoretical free streamlines. The profile shape of the resulting body was designed 
according to Roshko’s (1954) notched hodograph method. Details of the design 
of the model are given in the appendix. The model cross-section is shown in 
figure 1 and the size of the equivalent flat plate, D,  is 2.54cm. The model side 
faces become parallel in a distance of just less that D and remain parallel for 10D. 
The body is terminated in a streamlined tail fairing length 6D. Surface oil flow 
patterns showed there to be a region of separated flow situated towards the end 
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FIGURE I. Flat-plate free-streamline model. 

of the curved portion of the ‘free streamline’. Trip wires were fitted a t  about 
0 . 5 0  from the ‘edges’ of the plate and removed the unwanted separations. 

Turbulence measurements were made with Disa constant-temperature 
linearized hot-wire anemometers. A traverse gear was embedded in the model 
and either normal-wire or X-wire probes could be traversed out along the mean 
stagnation streamline. The hot-wire probe came out of the face of the model 
through an air-tight seal. In  addition to the velocity measurements, fluctuating 
surface pressure measurements on the stagnation line were made using a gin. 
Bruel & Kjaer microphone. The microphone was connected to a surface hole 
by about 1-3 em of 2 mm probe tubing. The frequency response of the microphone 
and probe tube was checked against a standard Bruel & Kjaer microphone. 
Some damping had to be added to the probe tube to suppress the effect of 
the lowest resonant frequency; with damping the frequency response was made 
acceptably flat to 2 kHz. At frequencies less than about 20 Hz the level of power 
spectral densities had to be raised to compensate for a fall off in microphone 
response. Fluctuating velocity and pressure signals were recorded on a tape 
recorder for later digitization and analysis on a computer. 

3. Experimental results 
Flow behind the turbulence producing grids 

The turbulence structure behind the four grids was investigated on the centre- 
line of the working section, in the absence of the model, at  a distance from the 
grids corresponding to the distance to the stagnation point. The measurements 
of the intensity of the three components of the turbulence together with a 
representative value of scale, the longitudinal integral scale of the along wind 
component, are presented in table 2. The measurements were made at  a wind 
speed of about 18m/s and values of the grid Reynolds number R,, based on 
mesh size, are given in table 2. In  accordance with the results of other in- 
vestigators, the turbulence components normal to the mean wind direction were 
found to be smaller than the along wind components. The values of the turbulence 
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Grid [ ( u ) * / U ]  x lo2 [(v’d)*/U] x 102 [(w”)i/U] x loa L, (cm) Lz/D R, x 10-4 
A 2-09 1.63 1-66 3-05 1.2 4.7 
B 2.83 2.2 2.34 4.57 1.8 9.5 
C 5.71 4.4 4.81 6.54 2.57 18.9 
D 6-40 4.95 5.31 6.05 2.38 28.4 

TABLE 2 

?i 

FIGURE 2. Spectra of the u component in the absence of the model. x , grid A ;  0, g i d  B; 
A, grid C; V, grid D; -, von KArmdn spectrum. 

scale were estimated from power spectral density measurements, assuming 
Taylor’s hypothesis. The scale produced by the smaller mesh grid, grid C ,  is 
larger than that produced by grid D .  This is because scale increases with distance 
from a grid and the measuring station was comparatively nearer to the grid in 
case D .  

Spectra measurements were made of the u component of turbulence for the 
flow behind each of the grids. Figure 2 shows the spectra plotted in a normalized 
form. The power spectral density F(n) is plotted in the non-dimensional form 
(F(n) U0)/(27rL,q) = 6, against the frequency parameter (27rnLz)/U0 = %, where 
n is frequency in Hz. The results are shown compared with the spectrum cal- 
culated from von Kkm&n’s interpolation formula (see Hinze 1959). This 
spectrum has the form 0, = (2/7r) [1 + 1.8ii2)-% and gives a good representation 
of the ex erimental results, 
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%ID 
FIGURE 3. Mean velocity approaching stagnation. 0, smooth flow; 

a, grid D ;  -, hodograph solution. 

Velocity measurements ahead of t?Le body 

The first measurements were made in smooth flow and the mean velocity profile 
along the stagnation streamline is shown in figure 3. The hot wire was traversed 
out t o  just over 4 plate widths ahead of the model. Within a distance of 0-iD 
from the surface the hot-wire results were subject to a number of errors, the most 
serious of which was that the seal at the stagnation point could not be held when 
the wire was very close to  the surface. Also the presence of the wire may have 
moved the stagnation point slightly. Either of these effects could have caused 
the apparent small increase in velocity measured very close to the surface. As 
a check on the measuring technique the velocity distribution was compared with 
that predicted by Roshko’s (1954) hodograph method. Details of the computation 
of the velocity field are given in the appendix. The predicted profile is also shown 
in figure 3 and the agreement with experiment is seen to be good. In turbulent 
flow the mean velocity profile was measured in the flow behind each of the four 
grids and showed good agreement with the smooth-flow result. The velocity 
profile measured with grid Din the tunnel is shown in figure 3. Hiemenz’s solution 
for the boundary layer a t  the stagnation point gives a thickness of just over 
0.OiB. All the measurements were made well outside this boundary-layer region. 

Although not strictly part of this investigation, turbulence measurements with 
a normal wire were made ahead of the body in smooth flow and showed a number 
of unusual features. It is to  be expected that the turbulence intensity based on 
local velocity might gradually rise as the model is approached. However there 
were several local regions of increased turbulence level along the stagnation 
streamline, one as high as 1 % a t  x /D = 0.35, which appear to have been caused 
by the presence of the hot wire in the flow. The wire was situated in a region of 
strong adverse pressure gradient and it may well have had some disturbing 
effect 011 the flow. If the wire was moved slightly off the stagnation streamline 



Distortion of turbulence approaching a bluff body 45 7 

1.8 

1.6 

1.4 

1.2 

I g 
1s 1 

I +8 

0.8 

0.6 

0.4 
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 

"ID 

1.8 

1.6 

1.4 

0.8 

' (4 I 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

. \  
\ 
\ 
\ 
\ 
\ 

0.4 I I I I I 
0 0.5 1 1.5 2 2.5 3 

-I 
3.5 

FIGURES 4(a) and ( b ) .  For legend see following page. 



45 8 P. W .  Bearman 

0 0.5 1 1.5 2 2.5 3 3.5 4 

X l D  

FIauRE 4. Velocity component approaching stagnation. 0, grid A ;  x , grid B; A, grid C; 
v, grid D; - - -, L J D  = 0 ;  -, L J D  = co. ( a )  u component. ( b )  v component. ( c )  w com- 
ponent. 

the disturbance disappeared. Measurements in turbulent flow, on the other hand, 
showed no obvious evidence of any interference by the hot-wire probe. 

The root-mean-square values of all three components of turbulence were 
measured ahead of the body along the stagnation streamline. It is difficult to 
interpret their meaning if they are simply plotted as a variation of local turbulence 
intensity because the changes in intensity are dominated by the changes in the 
mean velocity. Instead the local root-mean-square value of the turbulence com- 
ponent has been divided by its value recorded a t  x/D = 4.25. Figure 4 (a )  shows 
the variation of (T2)*/(q)4 ahead of stagnation for the four values of scale tested. 
The two smaller scales show an amplification of energy, whereas the two larger 
scales show a continuous attentuation. At the surface, of course, the value of 
(G)*/(%$ must drop to zero. There will be some natural decay of turbulence 
between x /D = 4.25 and 0. Without the model in position the turbulence was 
found to decay by only about 2-3 yo in this distance and no attempt has been 
made to correct the results. These results show similar features to some measure- 
ments by Petty (see Hunt 1971 b )  of the variation of the u component in turbulent 
flow approaching a circular cylinder. 

Very near the stagnation point the hot wire can only give a rough indication 
of the level of the fluctuating velocities because of the very high local turbulence 
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Maximum Amplification of 
Grid (u”)pu intensity 

A 0.18 8.6 
B 0.21 7.43 
c 0.32 5.60 
D 0.34 5.31 

TABLE 3 

intensities. The hot-wire output was linearized but further errors will arise at  
high levels of turbulence owing to the nonlinear yaw response. This effect is 
likely to be more pronounced for the X-probe, for which there is the strong 
possibility that part of the time the instantaneous velocity vector may be at 
an angle of more than 45” to the free-stream direction. Table 3 shows the highest 
values of local intensity recorded and in all cases this occurred at  x / D  = 0.1. 
Grid A showed a nearly ninefold increase in the value of intensity. 

The other component of turbulence in the plane containing the cross-section 
of the model, (g)i/($)*, is shown in figure 4(b) .  The system of axes is shown in 
figure 1. The third component (G)%/(%)i, which is in a direction parallel to the 
stagnation line along the model, is plotted in figure 4(c). While (2)+/(& shows 
generally an opposite effect to  that of (@)+/(%)8, (G)/(%)* shows only amplifica- 
tion. Near the surface viscous effects will reduce these components to zero. 
Further discussion of these results is left until 6 4. 

Power spectral density measurements ahead of the body 

For each grid, power spectral densities of the longitudinal component of tur- 
bulence were computed a t  x /D = 3.025, 0.624 and 0.183. The spectra measured 
at  z / D  = 3.025 showed no significant variation from those measured in the 
absence of the model. The spectra measured at  x/D = 0.624 and 0.183 are shown 
in figures 5 (a) and ( 6 )  respectively. Spectra are shown plotted as 

( F ( n )  ~ , ) / ( 2 n - ~ ~ i i j )  = S, against (2nn~,./4 = ii, 

and the area beneath each spectrum is u2/u& i.e. the square of the ratio shown in 
figure 4 (a) .  In  order to compare these with the spectra measured in the absence 
of the body the curve obtained from the von K&rm&n interpolation formula is 
also shown. 

Figure 5 (a )  shows that the power at  low wavenumbers begins to decrease (or 
remain constant, grid A )  and the largest attenuation occurs for the fiow with 
the largest scale, grid C .  At higher wavenumbers the turbulence from all grids 
shows an increase in power. In  figure 5 (b) the apparent shift of energy from low 
wavenumbers to higher wavenumbers is more marked, while at  the high wave- 
number end of the spectrum viscous decay of energy causes the spectra to fall 
off at a rate greater than - $. It is interesting to note that for grid A ,  giving the 
smallest scale, the turbulence amplified even at low wavenumbers. 

- -  
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FIGURE 5. Spectra of the u component. x , grid A ;  0, grid B;  A, grid C ;  v, grid D; 
-, von KBrmAn spectrum. ( a )  x/D = 0-624. ( b )  x/D = 0.183. 
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FIQURE 6. Spectrum of pressure fluctuations a t  the stagnation point. 0, pressure 
x , velocity 8,; - , equation (9) (below). ( a )  Grid A.  ( b )  Grid C. 
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FIGURE 7. Root-mean-square value of the pressure fluctuations at  the 
stagnation point. 0, grid A ;  x , grid B;  a, grid C ;  0, grid D. 

Measurements of pressure JEuctuations at the stagnation point 

For each of the grids, power spectral density measurements of the fluctuating 
pressure were made, and the spectra for grids A and C, representing the smallest 
and largest values of Lx/D examined, are shown in figures 6 ( a )  and (b) .  The power 
spectral density of the pressure, F ( p )  (n), is presented in the non-dimensional 
form ( F ( p )  (n))/(2nL,p23U,,) = 1 9 ~ .  The r.m.s. value of the fluctuating com- 
ponent of the pressure at  the stagnation point, (2)6, was measured for each of 
the grids. The results are shown in figure 7 plotted against the scale parameter 
DIL,. The fluctuating pressure is presented in the non-dimensional form 
(F)B/pUo(2)4 and the reason for this choice of parameter is left until $4. The 
values of (2)i were calculated from the spectra after they had been corrected for 
the effects of the variations in the frequency response of the transducer. 

4. Discussion of results 
The modification of the turbulence by the body is fundamentally different in 

the two extreme cases where L, B D and L, < D. 
The case L, 9 D 

When L, B D the flow approximates to a slow quasi-steady variation of the 
direction and magnitude of the approaching velocity. Hunt (1971 a )  treats the 
flow around a circular cylinder assuming it to be inviscid and also assuming 
(ui)* = (vg)i = (w$ = 7Uo, where 7 is small. In  the x direction the flow is similar 
to that caused by a slow variation of the longitudinal velocity, and as the body 
is approached the fluctuating velocity will attenuate like the mean velocity. 
Hence 

- - - 

( ~ o + u , ) / ~ o  = (U+U)/U, 

and 

In  the y direction the effect of uo will be to alter the incidence of the flow and it 
can easily be shown by potential-flow theory that, along the stagnation stream- 
line , - _  

(V")+/(v&)4 = 2 - upo. 
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The component in the x direction is unaffected by the presence of the body: 

(2)*/(G$ = 1. (3) 

For a two-dimensional flat plate in a potential flow there is no change in 
(v")i along the stagnation streamline, although it would be unrealistic to use this 
result since in the real flow there is separation a t  the edges. For the free-streamline 
model it is assumed for simplicity that, at least away from the stagnation point 
itself, the flow is similar to that approaching a circular cylinder. This is a very 
idealized picture since if the scale of turbulence is infinite the w fluctuation will 
induce an alternating circulation on the complete body. It can be seen from 
figure 1 that the model cross-section has a shape similar to that of a blunt-nosed 
aerofoil section. The length of the body, however, is nearly an order of magnitude 
longer than the largest scale of turbulence and it therefore seems reasonable 
to treat the complete flow as inviscid and to neglect the effect of any Kutta 
condition at the trailing edge. Thus when the condition L, % D is stated this 
needs to be accompanied by L, < C, where Cis the chord of the model. Equations 
(l), (2) and (3) are shown plotted in figures 4(a) ,  (b)  and (c) respectively. 

The case L, < D 
If L, < D the distortion of the turbulence along the stagnation streamline 
approximates to that caused by uniform plane strain, and the results of Batchelor 
& Proudman (1954) can be used directly. The rapid-distortion theory of 
Batchelor & Proudman predicts an amplification of (g)* and ( 2 ) l  and an atten- 
uation of (>)*. Their results are also shown in figure 4. When the local velocity 
U/Uo is less than about 0.5 the expressions of Batchelor & Proudman reduce 
to the simpler forms given below: 

(2)*/(2)* = [ % U O / ~  $. # ( U / ~ C I )  (log ( ~ U O / U )  - +)la, 

(3VZ$ = [%(u/u0) (log (4u0/u) - I)]*, 

(>)*/(%)* = [$U0/U- $( U/U0) (log (4UO/U) -$)I*. 

The case L, = O(D) 

The experimental results are seen to fall between the two limiting curves with 
results for smaller scales generally tending towards the LJD -+ 0 curve. The 
largest amplification of energy occurs for the w component although there is 
no rate of strain in this direction. Clearly, close to the body the local intensity 
is rising to such a high value that the assumptions made in rapid-distortion 
theory cannot hold and the nonlinear terms in the vorticity equation can no 
longer be negligible. 

Although vortex stretching amplifies (2(.2)&, close to the surface the effect of 
the wall on small-scale eddies will be similar to its effect on larger scale eddies 
further away from the stagnation point, i.e. it attenuates the fluctuations. The 
turbulence is thus affected on the one hand by vortex stretching and rotation 
and on the other by the simple blocking of the flow by the body. At  intermediate 
scale sizes it can be expected that low wavenumbers will exhibit some of the 
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features of L, B D flows while high wavenumbers will be dominated by vortex 
stretching. This idea is well supported by the spectra measurements of the u 
component, which show a large shift of energy to higher wavenumbers as the 
stagnation point is approached. 

Before leaving the hot-wire measurements there are one or two anomalies 
in the results for (2)4 and (2)4 which should be pointed out and which may have 
arisen from errors in the hot-wire response or may be genuine features of the flow. 
In  figure 4 ( b )  the larger scale turbulence shows an increase in (2)4 up to about 
x/D = 0.3 and then a decrease, presumably to zero a t  the stagnation point. The 
smallest scale turbulence (grid A ) ,  however, shows an increase between x/D = 0.4 
and 0.1. Spectra measurements would be required to establish whether this is 
due to some selective amplification of part of the wavenumber range. Second, 
in figure 4(c) turbulence produced by grid D shows a larger amplification than 
the slightly larger scale turbulence produced by grid C. 

Pressure jluctuations 

If L, > D it is possible to treat the velocity fluctuations in the vicinity of the 
plate as irrotational and it is assumed that the unsteady version of Bernoulli's 

(4) 1 2  p 84 
equation can be applied: 

P at 
where q is the total velocity, is the velocity potential, B is the body force 
potential and F(t)  is constant throughout the flow at any instant of time. It can 
be shown that v and w produce no significant contribution t o  the fluctuating 
pressure a t  the stagnation point. The problem then reduces to that of a flat 
plate in a flow of varying longitudinal velocity V(t).  The velocity potential for 
a flat plate normal to a stream is # ( t )  = $U( t ) (9+D2)+ ,  and B = xdU(t)/dt. 

zq +--- + B  = F(t) ,  

Substituting in (4) gives 

Far away from the plate, equation (5) reduces to 

g W ; + w o / p  = w, (6) 

where P(t ) ,  is the pressure far from the plate. Batchelor (1953) has shown that 
in isotropic turbulence the fluctuating component of the static pressure is small 
and obtained the relation (a 0 . 5 8 0 .  (U2)4 

-= 
PUO(3P UO 

The maximum value of ( ~ ) 4 / p U o ( u ~ ) ) B  is 3.7 x which occurs in the flow 
behind grid D. Since it can be shown that, at the stagnation point, (2)4 /pUO(g)4  
is of order unity, neglecting the upstream fluctuating static pressure will intro- 
duce little error. On substituting (6) in (5) and neglecting second-order terms 
the relation for the fluctuating pressure at  the stagnation point becomes 
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A fuller and a more physically realistic treatment by Hunt (1971 a )  shows that 
(7 )  is of the correct form but that there are further terms involving spatial 
derivatives of u which are as important as the temporal one. By assuming that 
the record of the pressure fluctuations forms part of an infinite stationary random 
process it is possible to rewrite (7)  in terms of the power spectral densities of the 
pressure and the upstream velocity: 

S ( p )  (n) = p2F(n)  Ui [ l  +$(2nnD/Uo)2]. ( 8 )  

If S(n) is expressed in the non-dimensional form given earlier (by dividing by 
(2nLx%)/U,,)) equation (8) becomes 

so e, = sup + ~ ~ ( D I L , ) ~ ] .  (9) 

If D/Lx  -+ 0, Bp = 0, and the pressure and velocity spectra, non-dimensionalized 
as above, should be identical. A comparison of the spectra of pressure and velocity 
is shown in figures 6(a) and (b) ,  and it can be seen that they agree closely at low 
wavenumbers, whereas at higher wavenumbers the pressure spectra falls away 
below the velocity spectra rather than showing the increase indicated by (9). At 
each scale size examined there was a definite break point, where the pressure 
spectrum diverged from the velocity spectrum, and with increasing values of 
Lx /D the break point moved to higher wavenumbers. At high wavenumbers the 
pressure spectra fell off at  about 1.75 times as fast as the velocity spectra. The 
results of Marshall (1968) measured on a disk show a similar attenuation of the 
pressure spectrum. These results, therefore, show that the assumptions made in 
deriving (7) fail before any acceleration effects are felt. The attenuation of the 
pressure spectra is a direct result of the rotational nature of the turbulence and 
the accompanying distortion of the vorticity field. Further experiments are re- 
quired to determine whether there is a corresponding reduction in the correlation 
of these high wavenumber pressure fluctuations over the body surface. In  an 
attempt to  predict the relationship between fluctuating drag and oncoming 
turbulence Vickery (1965) assumed that the correlation pattern of fluctuating 
pressures on the face of a bluff body is identical to the lateral correlations of the 
u component of the approaching turbulence. The present results suggest that 
in order to help to explain the magnitude of the fluctuating drag measured on 
square plates in turbulent flow by Bearman (1971) these high wavenumber 
pressure fluctuations need to be substantially better correlated than this. 

If L x / D  = co then (9) shows that 
- 

0, = 8, and (p2) t  = pgo(ug)4 or (E)H = 2(u2,)6/g0. 

The measurements of (p)S are shown non-dimensionalized bypUo(u:)t in figure 7. 
The results indicate that even when D/Lx = 1 the root-mean-square value of the 
pressure fluctuations is still between 60 and 70 yo of pUo(ui)*. 

_ -  

_ -  
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5. Conclusions 
When L,/D >> 1 a quasi-steady type of approach can be used and, along the 

mean stagnation streamline) (2 )s  will attenuate like the mean flow, whereas if 
L J D  < 1 the turbulence is distorted by the mean flow field and (2)9 will amplify 
owing to vortex stretching. In  the experiments described here L J D  = O( 1) and 
there is found to be a combination of these effects with attenuation of energy 
at  low wavenumbers and amplification at high wavenumbers. The other com- 
ponents of turbulence are found to behave in a consistent manner with the 
component parallel to the stagnation line on the body, which experiences no 
mean rate of strain, showing only amplification. Measurements of the pressure 
fluctuations at  the stagnation point show that at low wavenumbers the level of 
pressure fluctuations can be predicted by simply applying Bernoulli’s equation. 
However at  higher wavenumbers the effect of the distorting field of the body is 
found to reduce the level of the pressure fluctuations and the pressure spectra are 
found to drop off 1-75 times as fast as the spectra of the approaching turbulence. 

The experiments described in this paper were carried out while the author 
was employed in the Aerodynamics Division of the National Physical Laboratory, 
Teddington, Middlesex, England. 

Appendix. Free-streamline model 
The profile shape of the flat-plate model was designed according to Roshko’s 

(1954) notched hodograph method. His method requires a value to be assigned 
to the base pressure coefficient Cpb. For this model c p b  was chosen to be - 1, thus 
making k = 42, where c p b  = 1 -k2,  k being the ratio of the velocity along the 
free streamline near separation to the free-stream velocity. Roshko’s method 
maps the flat plate and its wake on to the positive half of the real axis of the 
complex-w plane with the stagnation point at the origin. The free-streamline 
model co-ordinates are given by 

kZ+ 1 
xm = - 2k {[w(w - I)]+ - log [W+ f (w - 1)9]), 

ym = - -+-[w(a2-w~)]++atan-l - k2+1(n 2k 2 a (a2:w)+) 

for 1 < w < a2, where a = (k2+  l)/(k2-- 1). 
The width of the flat plate is given by 

l)++atan-l 

Beyond w = a2 the body is parallel sided with thickness 

h = [(kZ+1)/2k]n[l+a]. 

The resulting profile shape is shown in figure I. 
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Using the hodograph method it is possible to calculate the velocity profile 
along the stagnation streamline: 

v = 2k2 [(I+\)++ ($+ 1)4]-l, 
U, k2+1 w a 

where 

and 0 < w < 00. The velocity profile is plotted in figure 3. 
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